Calculation of an Atomically Modulated Friction Force in Atomic - Force Microscopy

نویسندگان

  • D. TOMANEK
  • W. ZHONG
  • H. THOMAS
چکیده

PACS. 82.20K-Potential energy surfaces for chemical reactions. PACS. 71.45N-Calculations of total electronic binding energy. PACS. 68.65-Layer structures, intercalation compolU1ds and superlattices: growth, structure and non-electronic properties. PACS. 61.16D-Electron microscopy determinations (inc. scanning tunnelling microscopy methods). Abstract.-We investigate the microscopic mechanism of energy dissipation in the friction force microscope (FFM), which is a modification of the atomic-force microscope for application to friction. Based on ab initio results for the interaction between Pd and graphite, we determine the atomic-scale modulation of the friction force and the corresponding stick-slip molion at the interface during the relative motion between these solids. We propose two idealized versions of the FF1\1 and show that the friction force depends not only on the Pd-graphite interaction potential, but even more critically on the construction parameters of such a microscope. Friction between two solids is one of the most important and complex processes which affect everyday's life. So far, the science of friction-tribology-has described this phenomenon mainly in a macroscopic and phenomenological way [1]. More recently, successful attempts have been undertaken to observe friction forces on the atomic scale [2] and to understand the underlying microscopic mechanisms in case of sliding friction without wear [3]. Independently, the availability of supercomputers has made predictive calculations [4,5] of atomic-scale friction forces possible. The recent experimental progress in nanotribology has been facilitated by the development of a modified version of the atomic-force microscope [6] (AFM) for application to friction, which is sometimes called the friction force microscope (FFM). Like the AFM, the FFM consists of an «atomically sharp" tip of a material A, suspended on a soft cantilever, which is brought into nondestructive contact with a well-defined substrate B. Measuring the vertical deflection of the cantilever is used to keep the applied load F..xl constant during the sLUface scan. An independent measurement of the cantilever deflection in the direction of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy

In this paper we correlate the Atomic Force Microscope probe movement with surface location while scanning in the imaging and Force versus distance modes. Static and dynamic stick-slip processes are described on a scale of nanometres to microns on a range of samples. We demonstrate the limits and range of the tip apex being fixed laterally in the force versus distance mode and static friction s...

متن کامل

Microscopic Friction Studies on Metal Surfaces

Atomically flat and clean metal surfaces exhibit a regime of ultra-low friction at low normal loads. Atomic force microscopy, performed in ultra-high vacuum on Cu(100) and Au(111) surfaces, reveals a clear stick-slip modulation in the lateral force but almost zero dissipation. Significant friction is observed only for higher loads (*4– 6 nN above the pull-off force) together with the onset of w...

متن کامل

Frictional characteristics of atomically thin sheets.

Using friction force microscopy, we compared the nanoscale frictional characteristics of atomically thin sheets of graphene, molybdenum disulfide (MoS2), niobium diselenide, and hexagonal boron nitride exfoliated onto a weakly adherent substrate (silicon oxide) to those of their bulk counterparts. Measurements down to single atomic sheets revealed that friction monotonically increased as the nu...

متن کامل

Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive m...

متن کامل

Atomic Force Microscopy Application in Biological Research: A Review Study

Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991